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Abstract

A finite-element numerical scheme is used to study rigorously the flow of an inclined liquid film and the heat transfer from the c
temperature wall. Regular inlet disturbances are predicted to evolve into periodic or solitary waves depending on the frequency of th
At very low disturbance frequencies parasitic crests appear and the regularity of the wavetrain is lost. The effect of a solitary wav
heat transfer from the wall is studied, and it is predicted that a stationary temperature distribution develops with periodic flux varia
follows the waves. The thinning of the substrate between successive humps combines with the effect of convection at the crest an
solitary humps to produce heat transfer enhancement significantly above the conduction limit.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Film flow occurs in a variety of process equipme
including condensers, falling film evaporators, absorp
columns and two-phase flow reactors. In a range of Reyn
numbers of interest to such engineering applications (<

Re < 400) the flat free surface is unstable and trave
waves develop. These surface waves have long been k
to affect heat and mass transfer across the film [1]. Howe
the flow problem is extremely complex because the locatio
of the free surface varies continuously and must be fo
as part of the solution. Consequently, efforts to explain
influence of waves on transport processes have to s
extent relied on heuristic modeling [2–5], and only fe
studies have adopted rigorous numerical solution of the
and energy transport equations [6–9].

Of particular interest among the various wave for
adopted by the free surface are solitary waves, ie. stro
nonlinear humps proceeded by capillary ripples, which
tain a stationary shape and are separated by relatively
stretches of flat substrate. It has been observed [10] th
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many circumstances the downstream evolution of film fl
tends to a series of solitary waves. This occurs directly w
regular disturbances of low frequency are introduced at
inlet, and indirectly (through a sequence of nonlinear in
actions) when the inlet disturbance consists of random no

Thus, the goal of the present contribution is to investig
computationally the dynamics of the unstable free surfac
an inclined liquid film, as well as its influence on heat tra
fer across the film. The full Navier–Stokes equation is sol
by a finite-element method, delineating the evolution of
free surface and the flow field below the waves. The flow
considered from the initial stages of linear instability up
the development of stationary traveling waves [6]. The
ergy equation is solved subsequently with the same met
providing information on the effect of waves on heat trans

Emphasis is placed on the role of solitary waves,
in particular at low wall inclinations and relatively sma
Reynolds numbers. These conditions lead to the forma
of two-dimensional free-surface waves without recircu
tion at the crest, whose properties and interactions h
been experimentally documented [10,11]. Thus, the pre
study is closely related and complementary to recent w
by Miyara [9], who used a finite-difference method to
vestigate heat transfer on a vertical film at significan
higherRe.
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Nomenclature

A amplitude of inlet disturbance
nondimensionalized byH

Bi Biot number,= hH/k

c dimensionless phase velocity of waves
nondimensionalized byU

f disturbance frequency . . . . . . . . . . . . . . . . . . . s−1

Fr Froude number,= U/(gH)1/2

g gravitational constant . . . . . . . . . . . . . . . . . m·s−2

H Nusselt film thickness. . . . . . . . . . . . . . . . . . . . . m
h heat transfer coefficient . . . . . . . . . W·m−2·K−1

Hc free surface curvature. . . . . . . . . . . . . . . . . . . m−1

k thermal conductivity . . . . . . . . . . . . W·m−1·K−1

n unit normal vector at free surface
p dimensionless pressure nondimensionalized

by ρU2

Pr Prandtl number,= ν/α

Pe Peclet number,= UH/α

Q liquid flow rate per unit span . . . . . . . . . . m2·s−1

q heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2

Re Reynolds number,= Q/ν

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
t dimensionless time nondimensionalized

by H/U

U mean velocity of liquid . . . . . . . . . . . . . . . . m·s−1

u dimensionless streamwise velocity
nondimensionalized byU

v dimensionless normal velocity
nondimensionalized byU

x dimensionless streamwise distance
nondimensionalized byH

y dimensionless distance normal to the wall
nondimensionalized byH

We Weber number,= σ/ρU2H

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s−1

η dimensionless film thickness
nondimensionalized byH

θ dimensionless temperature temperature
scale(Tw − Ta)

µ viscosity . . . . . . . . . . . . . . . . . . . . . . . kg·m−1·s−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

σ surface tension . . . . . . . . . . . . . . . . . . . . . . N·m−1

τ dimensionless stress tensor nondimensionalize

by ρU2

ϕ inclination angle . . . . . . . . . . . . . . . . . . . . degrees
ϕi biquadratic Galerkin basis function
ψi bilinear Galerkin basis function

Subscripts

m mean value across the film
a conditions along the front part of wall
w conditions along the main part of wall
i finite-element node
s free surface
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2. Mathematical formulation and numerical solution

Two-dimensional, gravity-driven flow down a plane wi
inclination ϕ relative to the horizontal is considered,
sketched in Fig. 1. The mean volumetric flow rate per u
span is denoted byQm and theRe number is defined a
Re = Qm/ν, whereν is the kinematic viscosity,ν = µ/ρ.
Coordinatex is in the streamwise direction and coordina
y is normal to the plane. The location of the free surfa
and the magnitude of the instantaneous volumetric fl
rate per unit span generally vary withx and t and are
described by the functionsη(x, t) andQ(x, t), respectively.
For reference, we recall the classical Nusselt solution wit
a parabolicx-velocity with mean valueU = g sinϕH 2/3ν,
and a uniform film with thicknessH = (3ν2Re/g sinϕ)1/3

(thusQ = UH ).
In the present work we consider the hydrodynam

problem of the development of nonlinear waves along
free surface of the film, as well as the thermal problem
heat transfer from the wall to the film. With respect to t
latter, the flow is considered isothermal, with temperat
Ta , up to a streamwise distancex = x0 from the inlet, and
then the wall is heated to a constant higher temperatureTw.
Fig. 1. Sketch of the flow system considered.

The free surface is thermally characterized by a uniform
temperature,Ta , and a constant heat transfer coefficienth.
The effect of temperature on physical properties is negle
(passive scalar transport) and thus the two problems
solved consecutively.

A complete description is provided by the continui
Navier–Stokes and energy equations, together with a s
boundary conditions. We useU , H and (Tw − Ta) as the
characteristic velocity, length and temperature scales. W
nondimensionalize time and pressure with the magnitu
H/U andρU2, respectively, and temperature withθ = (T −
Ta)/(Tw − Ta). The resulting equations in dimensionle
form are:
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∇ · u = 0 (1)
∂u

∂t
+ u · ∇ u = −∇ p + 1

Re
∇2u + 1

Fr2
g (2)

∂θ

∂t
+ u · ∇θ = 1

Re · Pr
∇2θ (3)

Hereu = (u, v) is the dimensionless velocity vector in th
fluid, with u andv its components in thex- andy-direction
respectively,p is the dimensionless pressure,g is the unit
vector in the direction of gravity,∇ is the gradient vector an
Fr = U/

√
gH is the Froude number. Because of the way

equations are nondimensionalized, the Froude number i
independent but is related to the Reynolds number by
expressionFr2 = (Re sinϕ)/3.

We further apply the no-slip and no-penetration bound
condition for the velocity along the flat wall,

u = v = 0 (4)

and the kinematic condition and the balance of forces a
the free surface:

∂η

∂t
+ u

∂η

∂x
= v (5)

n · τ = We 2Hcn (6)

The Weber number in Eq. (6) is defined asWe = σ/ρU2H ,
with σ the surface tension of the fluid, 2Hc = ηxx/

(1+η2
x)3/2 the mean free surface curvature,n the unit vector

normal to the free surface and

τ = −pI + 1

Re

[∇ u + (∇ u)T]
(7)

the dimensionless stress tensor of the fluid, withI the
identity matrix.

We apply the following boundaryconditions at the inlet in
order to introduce a small, periodic disturbance of freque
f and amplitudeA in the film thickness:

η(0, t) = 1+ Acos2πf t (8)

u(0, y, t) = 3Q(0, t)

η(0, t)

[
y

η(0, t)
− 1

2

y2

η2(0, t)

]
(9)

Eq. (8) prescribes the oscillations of the free surface at
inlet of the computational domain and Eq. (9) impose
parabolic velocity profile in thex-direction at the entrance
The parabolic velocity profile is expected to be an excel
approximation for the entrance conditions, given the sm
magnitude of the disturbances. The corresponding velo
in the y-direction is found by integration of the continui
equation, using Eq. (9) and the known dimensionless p
velocity of infinitesimal wavesc = 3. At the outflow we
apply the free boundary condition in order to let the flu
leave the computational domain freely without any distort
of the flow in the interior [6].

The primary unknowns of the problem, which are t
velocitiesu and v, the pressurep and the temperatureT ,
along with the unknown location of the free surfaceη, are
expanded in terms of Galerkin basis functions as:
t

u =
9∑

i=1

uiϕ
i , v =

9∑
i=1

viϕ
i, η =

3∑
i=1

ηiϕ
i

p =
4∑

i=1

piψ
i , θ =

9∑
i=1

θiϕ
i (10)

whereϕi are biquadratic andψi bilinear basis functions
This is a standard choice of basis functions in the applica
of the Gakerkin finite element method in flow problems [1

The governing equations, weighted integrally with t
basis functions, result in a set of residuals. The residual
evaluated numerically using nine-point Gaussian integra
and the resulting system of nonlinear algebraic equat
is solved with the Newton–Raphson iterative method. T
integration is performed with the Crank–Nicolson schem
Numerical accuracy has been tested by doubling the num
of finite elements both in thex- and they-direction and
by reducing by half the time step. All results rema
visually indistinguishable from the ones taken with high
discretization, and thus are considered mesh and time
independent.

3. Results and discussion

3.1. Development of free surface waves

Using the above computational scheme, we are
to follow the entire evolution process along the chan
The most important observation relates to the effect of
frequency of inlet forcing: More specifically, high-frequen
disturbances lead to saturated periodic waves whereas
frequency disturbances evolve directly into regularly spa
solitary waves. Relevant computational results are prese
in Fig. 2(a)–(d) forRe = 19.33, We = 5.43 andϕ = 6.4◦,
corresponding to the conditionsof the experiment of Liu and
Gollub [10].

Of particular interest among the different free surfa
profiles are solitary wavetrains. Solitary waves are kno
to be the most stable of free surface patterns, and thus
resent the final stage of evolution of a variety of initial co
ditions [13]. For example, the periodic waves of Fig. 2
and (b) will further downstream evolve towards an irregu
series of solitary humps through subharmonic and/or sid
band instabilities. As a closer scrutiny of the evolution
wards a solitary hump, we present in Fig. 3 consecutive
files of the nonlinear stage separated by 10 dimensionles
time units.

As we shall see later, solitary waves have a posi
influence on heat transferfrom the wall even at smallRe
and inclination angles. Thus, it would be desirable to
able to tailor a wavetrain of the desired frequency. To
end it is interesting to note that the generation of a serie
solitary pulses with very small frequency is impossible. T
difficulty was reported in past experiments [10,14] and w
loosely attributed to the linear instability of the extensive
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Fig. 2. Spatial evolution of the free surface for a film withRe = 19.33, We = 5.43 and inclinationϕ = 6.4◦ . The periodic inlet disturbances have frequenc
(a) 7 Hz, (b) 4.5 Hz, (c) 3 Hz and (d) 1.5 Hz.
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Fig. 3. The nonlinear evolution towards a solitary wave in a flow w
Re = 19.33, We = 5.43 and inclinationϕ = 6.4◦ and inlet disturbances
of frequency 1.5 Hz. Curves correspond to line profiles separated by 1
dimensionless time units.

substrate between consecutive humps. The same obser
is also born out by the present simulation and an explana
is attempted.

In particular, Fig. 4 shows time-consecutive free surf
profiles for the same conditions as in Fig. 2 but with
inlet frequency of 0.5 Hz. What is observed is that paras
crests form behind each major solitary hump. The appa
generation mechanism involves an elongated depres
which develops behind the major hump during its la
stages of evolution. The back of the depression gradu
steepens and a new solitary hump is formed. It is interes
to note that this process occurs in an orderly way du
every cycle of the inlet forcing. Thus, it is conjectur
that the phenomenon of parasitic crest generation is clo
n

,

Fig. 4. Temporal evolution of the free surface for a film withRe = 19.33,
We = 5.43 and inclinationϕ = 6.4◦ . The periodic inlet disturbances have
frequency of 0.5 Hz.

related to the radiation characteristics of the major hum
This interpretation is contrasted to the linear instabi
of the flat substrate that is expected to generate spa
unlocalized crests.

3.2. Effect of solitary waves on heat transfer from the wall

Next, we want to examine the effect of fully develop
solitary waves on heat transfer from the wall. To this e
we consider that the system is isothermal atT = Ta up to
a downstream distancex0 = 527H from the inlet, and tha
beyond this point the wall is kept at a constant eleva
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temperatureTw. The flow corresponds to the conditio
of the experiment of Liu and Gollub, i.e.,Re = 19.33,
We = 5.43, ϕ = 6.4◦ and f = 1.5 Hz. Note that the flow
is created so that it has become stationary before poinx0,
i.e., the solitary waves have attained a permanent shap
move with constant phase speed. In general, the downst
location where the system becomes hydrodynamically f
developed is easily modified by controlling the amplitude
inlet disturbances.

According to the nondimensionalization adopted
the temperature,θw = 1 and θa = 0. Also, a thermally
developed flat film with thermal conductivity,k, attains a
linear temperature distribution with free-surface valueTs =
(Tw + BiTa)/(1 + Bi) (or, equivalentlyθs = 1/(1 + Bi)),
whereBi = hH/k. The steady heat transfer through this fl
thermally developed film is

q0 = k
(Tw − Ts)

H
= Bi

(1+ Bi)
k
(Tw − Ta)

H
(11)

and the valueq0 is used to nondimensionalize heat trans
through the wavy film. The problem is described in terms
the Pe = Re Pr andBi dimensionless numbers. The pres
set of results refer to constantRe = 19.33 andBi = 10, and
examine the effect of the Peclet number.

The flow conditions tested (smallRe and inclination
angle) do not produce waves with internal recirculation
The enhancement of wall heat transfer under such condi
has previously been attributed [3] mainly to the thinn
of the liquid film, which is caused by the accumulation
mass in the solitary humps. The present rigorous simula
provides a means of investigating in detail the relative effect
of conduction and convection under the mild flow conditio
imposed. It is recalled that vertical films at higherRe show
significant enhancement, which was shown [9] to be rela
to the recirculating region developing under the crests.

We note at first that, though the present flow problem
fully developed, the thermal is not. If we consider the w
heat source turned on at time zero, we first have a st
temporal transient because ofthe very high temperatur
gradients close to the wall. This is a rather uninteresting fac
of the problem, and we just note that the pertinent time-s
for attenuation of transient effects is governed by ther
diffusion, and thus is equal toH 2/α.

Of more interest is the spatio-temporal evolution once
initial transient has faded away, which is then only dicta
by the passage of the solitary waves. Fig. 5 shows s
an example, which refers to the distribution of the w
heat flux for Pe = 50, at two different instants separat
by 20 dimensionless time units. A striking observation
that—beyond a rather short development region—a spat
periodic distribution of the heat flux appears, which is
correspondence to the instantaneous location of the so
waves and moves with their constant phase velocity. T
flux distribution indicates that the thermal problem reach
a quasi-steady state, an observation that should be exp
because of the large thickness of the wall thermal boun
d

d

Fig. 5. The spatial distribution of wall heat flux forPe = 50, at two different
time instants separated by 20 dimensionless time units.

Fig. 6. The spatial distribution of wall heat flux for differentPe numbers.

layer (Pr = 0.5–10) compared to the thickness of the liqu
film.

In order to investigate the effect of Peclet number,
consider a range of values (Pe = 5–200). Fig. 6 shows on
period of the spatial distribution of the wall heat flux (
the quasi steady-state) for three representative cases.
included is the hypothetical distribution, where the h
flux at each location corresponds to a thermally develo
flat film (Eq. (11)) with the local thickness. The latter
considered a satisfactory approximation of the effect of p
conduction in the long-wave limit.

Fig. 6 demonstrates the effect on wall heat flux
two different time (or length) scales associated with
passage of solitary waves. The shortest scale corresp
to the oscillations of the front-running ripples. It is seen
affect heat transfer significantly less than in the conduc
limit, and its net effect appears to be low. The long
scale corresponds to the wavelength of the solitary tr
and it affects all the Peclet number values considered
particular, for Peclet number< 50 the thermal behavio
of the thin substrate between crests is roughly equiva
to pure conduction. These predictions can be expla
by considering that the passage of each wave tempor
forces fluid parcels to approach the wall, while at the
same time decelerates and elongates them in the stream
direction. The extent of additional transient conduct
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Fig. 7. Quasi-steady temperature distribution below the wave for differentPe numbers. (a)Pe = 5, (b)Pe = 25, (c)Pe = 50, and (d)Pe = 200.
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taking place under these conditions is evidently dictated b
the relation of the characteristic thermal diffusion time to
aforementioned flow oscillation scales.

In addition to the above, Fig. 6 demonstrates a nonlin
phenomenon associated with the crest of the waves. In
conduction limit, the crest offers the highest resistance
heat transfer, and thus mitigates the positive effect of
thin substrate. However, we presently observe that, w
increasing Peclet number, the minimum of the wall heat flux
is raised significantly and is also shifted behind the w
crest. This behavior is associated with the thermal ine
of the fluid masses transported by the solitary humps
is also manifested in the temperature field below the w
which is depicted in Fig. 7(a)–(d). More specifically, t
temperature iso-contours—which at small Peclet num
are roughly self-similar to the shape of the free surfac
gradually become convection-dominated, with a sharp p
at the front of the solitary hump and a weak maximum un
the tail.
Fig. 8. The mean wall heat flux along one wavelength as a function oPe
number.

The mean heat flux through the wall (resulting fro
a combination of all the above contributions) is sho
as a function of Peclet number in Fig. 8. The value
Peclet number 0.01 corresponds to the conduction lim
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Fig. 6. It is interesting to note that a significant enhancem
beyond the conduction limit is predicted for a wide ran
of Peclet numbers. Thus, the present computation sup
the conclusion that convection contributes significantly
the wall heat transfer even when the solitary waves do
have a strong recirculation.

4. Conclusions

A Galerkin finite-element scheme is used to study
orously the flow of an inclined liquid film and the he
transfer from the wall. High-frequency inlet disturbances
predicted to evolve into saturated periodic waves and l
frequency disturbances into a wavetrain of solitary hum
Below a certain frequency parasitic crests appear and
regularity of the wavetrain is lost.

The effect of a regular solitary wavetrain on heat trans
from the wall is considered, and it is predicted tha
stationary periodic flux distribution develops that follow
the waves. The effect of Peclet number is studied in o
to understand the relative contributions of conduction
convection to the variation of wall heat transfer. For
range of Peclet numbers, convection is found to hav
significant influence at the crest and tail of the solit
humps. This effect, in combination with the thinning of t
substrate between successive waves, results in heat tra
enhancement above the conduction limit.
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