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Abstract

A finite-element numerical scheme is used to study rigorously the flow of an inclined liquid film and the heat transfer from the constant-
temperature wall. Regular inlet disturbances are predicted to evolve into periodic or solitary waves depending on the frequency of the forcing.
At very low disturbance frequencies parasitic crests appear and the regularity of the wavetrain is lost. The effect of a solitary wavetrain on
heat transfer from the wall is studied, and it is predicted that a stationary temperature distribution develops with periodic flux variation that
follows the waves. The thinning of the substrate between successive humps combines with the effect of convection at the crest and tail of the
solitary humps to produce heat transfer erdggment significantly adve the condution limit.

0 2004 Elsevier SAS. All rights reserved.
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1. Introduction many circumstances the downstream evolution of film flow
tends to a series of solitary waves. This occurs directly when

Film flow occurs in a variety of process equipment, regular disturbances of low frequency are introduced at the
including condensers, falling film evaporators, absorption inlet, and indirectly (through a sequence of nonlinear inter-
columns and two-phase flow reactors. In a range of Reynoldsactions) when the inlet disturbance consists of random noise.
numbers of interest to such engineering applications (1 Thus, the goal of the present contribution is to investigate
Re < 400) the flat free surface is unstable and traveling computationally the dynamics of the unstable free surface of
waves develop. These surface waves have long been knowran inclined liquid film, as well as its influence on heat trans-
to affect heat and mass transfer across the film [1]. However, fer across the film. The full Navier—Stokes equation is solved
the flow problem is extremelyoenplex because the location by a finite-element method, delineating the evolution of the
of the free surface varies continuously and must be found free surface and the flow field below the waves. The flow is
as part of the solution. Consequently, efforts to explain the considered from the initial stages of linear instability up to
influence of waves on transport processes have to somethe development of stationary traveling waves [6]. The en-
extent relied on heuristic modeling [2-5], and only few ergy equation is solved subsequently with the same method,
studies have adopted rigorous numerical solution of the flow providing information on the effect of waves on heat transfer.
and energy transport equations [6-9]. Emphasis is placed on the role of solitary waves, and

Of particular interest among the various wave forms in particular at low wall inclinations and relatively small
adopted by the free surface are solitary waves, ie. strongly Reynolds numbers. These conditions lead to the formation
nonlinear humps proceeded by capillary ripples, which at- of two-dimensional free-surface waves without recircula-
tain a stationary shape and are separated by relatively longtion at the crest, whose properties and interactions have
stretches of flat substrate. It has been observed [10] that inbeen experimentally documented [10,11]. Thus, the present

study is closely related and complementary to recent work

msponding author. by Miyara [9], who used a finite-dliffere.nce met_hoq.to in-
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Nomenclature

amplitude of inlet disturbance
nondimensionalized by

Biot number=hH/k

dimensionless phase velocity of waves
nondimensionalized by

disturbance frequency .................. 1s

Froude numbek= U/(gH)Y/?

gravitational constant................. TP
Nusselt film thickness.....................
heat transfer coefficient ......... :
free surface curvature................... I
thermal conductivity ............
unit normal vector at free surface
dimensionless pressure nondimensionalized
by pU?

Prandtl number= v/«

Peclet numbes= UH /o

liquid flow rate per unitspan.......... 1
heat flux..........oooeveeeein... W2
Reynolds numbeg Q/v

temperature .. ...
dimensionless time nondimensionalized

by H/U

mean velocity of liquid................ st

dimensionless streamwise velocity
nondimensionalized by
dimensionless normal velocity
nondimensionalized by

X dimensionless streamwise distance
nondimensionalized by

y dimensionless distance normal to the wall
nondimensionalized byf

We Weber number= o/pU?H

Greek symbols

o thermal diffusivity .. ................. fas1

n dimensionless film thickness
nondimensionalized b

0 dimensionless temperature temperature
scale(T, — T,)

w VISCOSIY ©ooeeeeeeeaeeenn k1571

v kinematic viscosity . ................. G5!

0 density. ..o kg3

o surface tension . ................o.o.... it

T dimensionless stress tensor nondimensionalized
by pU?

@ inclinationangle .................... degrees

©i biguadratic Galerkin basis function

Y bilinear Galerkin basis function

Subscripts

m mean value across the film

a conditions along the front part of wall

w conditions along the main part of wall

i finite-element node

s free surface

2. Mathematical formulation and numerical solution

Two-dimensional, gravity-driven flow down a plane with
inclination ¢ relative to the horizontal is considered, as
sketched in Fig. 1. The mean volumetric flow rate per unit
span is denoted by),, and theRe number is defined as

Re= Q,,/v, wherev is the kinematic viscosityy = u/p.

Coordinatex is in the streamwise direction and coordinate
y is normal to the plane. The location of the free surface
and the magnitude of the instantaneous volumetric flow

rate per unit span generally vary with and ¢+ and are
described by the functiong(x, ) and Q(x, t), respectively.

For reference, we recall theassical Nusselt solution with

a parabolicx-velocity with mean valud/ = g sing H2/3v,
and a uniform film with thicknes#f = (3v2Re/g sing)/3
(thusQ = UH).

In the present work we consider the hydrodynamic
problem of the development of nonlinear waves along the
free surface of the film, as well as the thermal problem of
heat transfer from the wall to the film. With respect to the
latter, the flow is considered isothermal, with temperature

T,, up to a streamwise distanee= xp from the inlet, and

then the wall is heated to a constant higher temperafyre,

e [

Fig. 1. Sketch of the flow system considered.

The free surface is thermally characterized by a uniform air
temperature7,, and a constant heat transfer coefficiént,
The effect of temperature on physical properties is neglected
(passive scalar transport) and thus the two problems are
solved consecutively.

A complete description is provided by the continuity,
Navier—Stokes and energy equations, together with a set of
boundary conditions. We us€é, H and (T, — T,) as the
characteristic velocity, lengtand temperature scales. We
nondimensionalize time and pressure with the magnitudes
H/U andpU?, respectively, and temperature with= (T —
1,)/(Ty — T,). The resulting equations in dimensionless

form are:



K. Serifi et al. / International Journal of Thermal Sciences 43 (2004) 761767 763

9 9 3
V-u=0 1) i i i
o oo loa 1 o MZX;IM(P, v=;vi<p, n=2ni¢
— . = — — — i= i= i=
R e ==L , .
W Vo=t V2 @ pr=y_pv.  0=) 6 (10)
at Re- Pr i=1 i=1

Hereu = (u, v) is the dimensionless velocity vector in the
fluid, with u andv its components in the- and y-direction
respectively,p is the dimensionless pressugejs the unit

where ¢’ are biquadratic and/’ bilinear basis functions.
This is a standard choice of basis functions in the application

: LT o & of the Gakerkin finite element method in flow problems [12].
vector in the direction of gravityy is the gradient vector and The governing equations, weighted integrally with the

Fr=U/J/gH is the Froude number. Because of the way the basis functions, result in a set of residuals. The residuals are

gquatlons are nor?d|men3|onal|zhed, the Frloude numberis E%valuated numerically using nine-point Gaussian integration
independent but is related to the Reynolds number by t €and the resulting system of nonlinear algebraic equations

. 2 _ .
expressiortr= = (Resm<p)/3._ i is solved with the Newton—Raphson iterative method. Time
We further apply the no-slip and no-penetration boundary e qration is performed with the Crank—Nicolson scheme.

condition for the velocity along the flat wall, Numerical accuracy has been tested by doubling the number
u=v=0 (4) of finite elements both in the- and they-direction and

) ) » by reducing by half the time step. All results remain
and the kinematic condition and the balance of forces alongvisually indistinguishable from the ones taken with higher

the free surface: discretization, and thus are considered mesh and time step

on on independent.
- N 5
ar Thax =Y ®)
n-t=We2H.n (6)

3. Resultsand discussion
The Weber number in Eq. (6) is defined\as= o /pU?H,

with o the surface tension of the fluid, [2 = 7./ 3.1. Development of free surface waves
1+ n§)3/2 the mean free surface curvatutethe unit vector
normal to the free surface and Using the above computational scheme, we are able

to follow the entire evolution process along the channel.
The most important observation relates to the effect of the
frequency of inlet forcing: More specifically, high-frequency
disturbances lead to saturated periodic waves whereas low-
frequency disturbances evolve directly into regularly spaced
solitary waves. Relevant computational results are presented
in Fig. 2(a)—(d) forRe = 19.33, We = 5.43 and¢ = 6.4°,
corresponding to the condition$the experiment of Liu and

1=-pl+ Rie[22+ (Vu)'] @

the dimensionless stress tensor of the fluid, witithe
identity matrix. B

We apply the following boundamgonditions at the inlet in
order to introduce a small, periodic disturbance of frequency
f and amplitudeA in the film thickness:

n(0,1)=1+ Acosft (8) Gollub [10].
30(0, 1) 1 2 Of particular interest among the different free surface
u©,y,t)= ’ [ y = 2y } (9) profiles are solitary wavetrains. Solitary waves are known
n0,1) [n,1) 2n=0,1)

to be the most stable of free surface patterns, and thus rep-
Eq. (8) prescribes the oscillations of the free surface at theresent the final stage of evolution of a variety of initial con-
inlet of the computational domain and Eqg. (9) imposes a ditions [13]. For example, the periodic waves of Fig. 2(a)
parabolic velocity profile in the-direction at the entrance. and (b) will further downstream evolve towards an irregular
The parabolic velocity profile is expected to be an excellent series of solitary humps thugh subharmonic and/or side-
approximation for the entrance conditions, given the small band instabilities. As a closer scrutiny of the evolution to-
magnitude of the disturbances. The corresponding velocity wards a solitary hump, we present in Fig. 3 consecutive pro-
in the y-direction is found by integration of the continuity files of the nonlinear stage safated by 10 dimensionless
equation, using Eqg. (9) and the known dimensionless phasetime units.

velocity of infinitesimal waves = 3. At the outflow we As we shall see later, solitary waves have a positive
apply the free boundary condition in order to let the fluid influence on heat transférom the wall even at smalRe
leave the computational domain freely without any distortion and inclination angles. Thus, it would be desirable to be

of the flow in the interior [6]. able to tailor a wavetrain of the desired frequency. To this
The primary unknowns of the problem, which are the end itis interesting to note that the generation of a series of
velocitiesu and v, the pressurg and the temperaturg, solitary pulses with very small frequency is impossible. This

along with the unknown location of the free surfageare difficulty was reported in past experiments [10,14] and was
expanded in terms of Galerkin basis functions as: loosely attributed to the linear instability of the extensive flat
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Fig. 2. Spatial evolution of the free surface for a film with = 19.33, We = 5.43 and inclinationy = 6.4°. The periodic inlet distrbances have frequency
(a) 7 Hz, (b) 4.5 Hz, (c) 3Hz and (d) 1.5 Hz.

2

b
(3]
T

-

Dimensionless film thickness, 1/H

Dimensionless film thickness n/H

800 900 1000 1100 1200

Dimensionless downstream distance, x/H —/‘»—/L—J‘yf—-«/}

Fig. 3. The nonlinear evolution towards a solitary wave in a flow with
Re = 19.33, We = 5.43 and inclinationp = 6.4° and inlet disturbances
of frequency 1.5 Hz. Curves corgnd to line profiles separated by 10 Dimensionless downstream distance, x/H
dimensionless time units.
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Fig. 4. Temporal evolution of the free surface for a film with = 19.33,
] _ We=543 and inclinationp = 6.4°. The periodic inlet disturbances have a
substrate between consecutive humps. The same observatiofiequency of 0.5 Hz.

is also born out by the present simulation and an explanation
is attempted. _ _ related to the radiation characteristics of the major humps.
In particular, Fig. 4 shows time-consecutive free surface This interpretation is contrasted to the linear instability

profiles for the same conditions as in Fig. 2 but with an of the flat substrate that is expected to generate spatially
inlet frequency of 0.5 Hz. What is observed is that parasitic ynlocalized crests.

crests form behind each major solitary hump. The apparent

generation mechanism involves an elongated depression3.2. Effect of solitary waves on heat transfer from the wall
which develops behind the major hump during its later

stages of evolution. The back of the depression gradually Next, we want to examine the effect of fully developed
steepens and a new solitary hump is formed. It is interesting solitary waves on heat transfer from the wall. To this end,
to note that this process occurs in an orderly way during we consider that the system is isothermall'at 7, up to
every cycle of the inlet forcing. Thus, it is conjectured a downstream distance = 527H from the inlet, and that
that the phenomenon of parasitic crest generation is closelybeyond this point the wall is kept at a constant elevated
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temperatureT,,. The flow corresponds to the conditions
of the experiment of Liu and Gollub, i.eRe = 19.33,
We =543, p =6.4° and f = 1.5 Hz. Note that the flow

is created so that it has become stationary before pgint
i.e., the solitary waves have attained a permanent shape an
move with constant phase speed. In general, the downstrea
location where the system becomes hydrodynamically fully
developed is easily modified by controlling the amplitude of
inlet disturbances.

s}

séheat flux, g/q,

N

0.5 1

Dimensioﬁe

According to the nondimensionalization adopted for 500 00 700 00 90 1000 1100 1200
the temperatureg,, = 1 and 6, = 0. Also, a thermally Dimensionless downstream distance, /H
developed flat film with thermal conductivity, attains a
linear temperature distribution with free-surface valye= Fig. 5. The spatial distribution of wall heat flux fBe = 50, at two different

(T, + Bi )/ (1 + Bi) (Or’ equivalently@s —1/1+ Bi)), time instants separated by 20 dimensionless time units.

whereBi = hH/ k. The steady heat transfer through this flat
thermally developed film is

_ (Tw - Ts) _ B| (Tw - Ta) Pe=200
=k H  (1+Bi H (11)

and the valugyg is used to nondimensionalize heat transfer
through the wavy film. The problem is described in terms of
the Pe = RePr andBi dimensionless numbers. The present
set of results refer to constaRe = 19.33 andBi = 10, and
examine the effect of the Peclet number.

The flow conditions tested (smaRe and inclination
angle) do not produce waves with internal recirculation [6]. 0'5800 820 840 860 280 900 920 940
The enhancement of wall heat transfer under such conditions Dimensionless downs tream dis tance, x/H
has previously been attributed [3] mainly to the thinning
of the liquid film, which is caused by the accumulation of
mass in the solitary humps. The present rigorous simulation
provides a means of investigatingdetail the relative effects  layer (Pr = 0.5-10) compared to the thickness of the liquid
of conduction and convection under the mild flow conditions film.

2

q0

o
L

Dimensionless heat flux, g/q,
.

Fig. 6. The spatial distribution of wall heat flux for differdPg numbers.

imposed. It is recalled that vertical films at highe show In order to investigate the effect of Peclet number, we
significant enhancement, which was shown [9] to be related consider a range of valueBg= 5-200). Fig. 6 shows one
to the recirculating region developing under the crests. period of the spatial distribution of the wall heat flux (in

We note at first that, though the present flow problem is the quasi steady-state) for three representative cases. Also
fully developed, the thermal is not. If we consider the wall included is the hypothetical distribution, where the heat
heat source turned on at time zero, we first have a strongflux at each location corresponds to a thermally developed
temporal transient because tife very high temperature flat film (Eg. (11)) with the local thickness. The latter is
gradients close to the wall. This a rather uninteresting facet  considered a satisfactory approximation of the effect of pure
of the problem, and we just note that the pertinent time-scale conduction in the long-wave limit.
for attenuation of transient effects is governed by thermal Fig. 6 demonstrates the effect on wall heat flux of
diffusion, and thus is equal tH?/«. two different time (or length) scales associated with the

Of more interest is the spatio-temporal evolution once the passage of solitary waves. The shortest scale corresponds
initial transient has faded away, which is then only dictated to the oscillations of the front-running ripples. It is seen to
by the passage of the solitary waves. Fig. 5 shows suchaffect heat transfer significantly less than in the conduction
an example, which refers to the distribution of the wall limit, and its net effect appears to be low. The longer
heat flux for Pe = 50, at two different instants separated scale corresponds to the wavelength of the solitary train,
by 20 dimensionless time units. A striking observation is and it affects all the Peclet number values considered. In
that—beyond a rather short development region—a spatially particular, for Peclet numbeg 50 the thermal behavior
periodic distribution of the heat flux appears, which is in of the thin substrate between crests is roughly equivalent
correspondence to the instantaneous location of the solitaryto pure conduction. These predictions can be explained
waves and moves with their constant phase velocity. This by considering that the passage of each wave temporarily
flux distribution indicates tht the thermal problem reaches forces fluid parcels to appach the wall, while at the
a quasi-steady state, an observation that should be expectedame time decelerates and elongates them in the streamwise
because of the large thickness of the wall thermal boundarydirection. The extent of additional transient conduction
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Fig. 7. Quasi-steady temperature distribution below the wave for diff@entimbers. (aPe= 5, (b) Pe= 25, (c)Pe= 50, and (d)Pe= 200.

taking place under these conditis is evidently dictated by e

the relation of the characteristic thermal diffusion time to the 12
0% o,

aforementioned flow oscillation scales.

conduction limit, the crest offers the highest resistance to
heat transfer, and thus mitigates the positive effect of the
thin substrate. However, we presently observe that, with

T, 4/q,

€]

he:

less

mension

Dj

= .
=

In addition to the above, Fig. 6 demonstrates a nonlinear 3
phenomenon associated with the crest of the waves. In thes

-
-
o

N
N
L

1.05
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L

increasing Peclet number, thémimum of the wall heat flux
is raised significantly and is also shifted behind the wave . . ‘ . .
crest. This behavior is associated with the thermal inertia 0.01 0.1 1 10 100 1000 10000

of the fluid masses transported by the solitary humps and Fe number

is also manifested in the temperature field below the wave, Fig. 8. The mean wall heat flux along one wavelength as a functid®e of
which is depicted in Fig. 7(a)—(d). More specifically, the number.

temperature iso-contours—which at small Peclet number

are roughly self-similar to the shape of the free surface—  The mean heat flux through the wall (resulting from
gradually become convection-dominated, with a sharp peaka combination of all the above contributions) is shown
at the front of the solitary hump and a weak maximum under as a function of Peclet number in Fig. 8. The value for
the tail. Peclet number 0.01 corresponds to the conduction limit of




K. Serifi et al. / International Journal of Thermal Sciences 43 (2004) 761767 767

Fig. 6. Itis interesting to note that a significant enhancement References
beyond the conduction limit is predicted for a wide range
of Peclet numbers. Thus, the present computation supports (1] A . bukler, The role of waves in two-phase flow: Some new

the conclusion that convection contributes significantly to understanding, 1976 Award Lecture, Chem. Engrg. Educ. 11 (1977)
the wall heat transfer even when the solitary waves do not  108-138.
have a strong recirculation. [2] N. Brauner, D.M. Maron, Characteristics of inclined thin films,

waviness and the associated mass transfer, Internat. J. Heat Mass
Transfer 25 (1982) 99-110.
[3] S. Jayanti, G.F. Hewitt, Hydrodynamics and heat transfer of wavy thin

4. Conclusions film flow, Internat. J. Heat Mass Transfer 40 (1997) 179-190.
[4] V. Bontozoglou, A numerical study of interfacial transport to a gas-
A Galerkin finite-element scheme is used to study rig- sheared wavy liquid, Internat. J. Heat Mass Transfer 41 (1998) 2297—
orously the flow of an inclined liquid film and the heat 2305.

transfer from the wall. High-frequency inlet disturbances are [5] R-M. Roberts, H.-C. Chang, Wave-enhanced interfacial transfer,
predicted to evolve into saturated periodic waves and low- _ Chem- Engrg. Sci. 55 (2000) 1127-1141. _
frequency disturbances into a wavetrain of solitary humps [6] N. Malamataris, M. Vlachogianaj V. Bontozoglou, Solitary waves on

. L. inclined films: Flow structure and binary interactions, Phys. Fluids 14
Below a certain frequency parasitic crests appear and the  (2002) 1082-1094.

regularity of the wavetrain i3_|03t- _ [7] B. Ramaswamy, S. Chippada, S.W. Joo, A full-scale numerical study

The effect of a regular solitary wavetrain on heat transfer of interfacial instabilities in thin-film flows, J. Fluid Mech. 325 (1996)
from the wall is considered, and it is predicted that a 163-194.
stationary periodic flux distribution develops that follows [8] E. Stuhltrager, A. Miyara, H. Ueara, Flow dynamics and heat transfer
the waves. The effect of Peclet number is studied in order of a condensate film on a vertical wall—II. Flow dynamics and heat

’ . . . . transfer, Internat. J. Heat Mass Transfer 38 (1995) 2715-2722.
to understand the relative contributions of conduction and ) i . i
. L. [9] A. Miyara, Numerical analysis of flow dynamics and heat transfer

convection to the variation of wall heat transfer. For a " o faiing liquid fims with interfacial waves, Heat Mass Transfer 35
range of Peclet numbers, convection is found to have a (1999) 298-306.
significant influence at the crest and tail of the solitary [10]J. Liu, J.P. Gollub, Solitary wave dynamics of film flows, Phys.
humps. This effect, in combination with the thinning of the Fluids 6 (1994) 1702-1711.
substrate between successive waves, results in heat transfdtll M. Vlachogiannis, V. Bontozogli, Observations of solitary wave

enhancement above the conduction limit dynamics of film flows, J. Fluid Mech. 435 (2001) 191-215.
' [12] P.M. Gresho, R.L. Sani, Incompressible Flow and the Finite Element

Method, Wiley, New York, 1998.
[13] H.-C. Chang, E.A. Demekhin, Ealaidin, Secondary and tertiary
Acknowledgements excitation of three-dimensional patterns on a falling film, J. Fluid
Mech. 270 (1994) 251-275.
This work was supported by the EU and the Greek [14] S.V. Alekseenko, V.Y. Nakoryakov, B.G. Pokusaev, Wave formation
General Secretariat for Research and Techno'ogy through on a vertical falling liquid film, AIChE J. 31 (1985) 1446-1460.
programs PENED (01-K£568).



